3.1.37 \(\int \frac {\csc (e+f x) \sqrt {c+d \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx\) [37]

Optimal. Leaf size=140 \[ -\frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f}+\frac {\sqrt {2} \sqrt {c-d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c-d} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f} \]

[Out]

-2*arctanh(cos(f*x+e)*a^(1/2)*c^(1/2)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2))*c^(1/2)/f/a^(1/2)+arctanh
(1/2*cos(f*x+e)*a^(1/2)*(c-d)^(1/2)*2^(1/2)/(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e))^(1/2))*2^(1/2)*(c-d)^(1/2)
/f/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.34, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3023, 2861, 214, 3022, 212} \begin {gather*} \frac {\sqrt {2} \sqrt {c-d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c-d} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f}-\frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Csc[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(-2*Sqrt[c]*ArcTanh[(Sqrt[a]*Sqrt[c]*Cos[e + f*x])/(Sqrt[a + a*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])])/(Sqrt
[a]*f) + (Sqrt[2]*Sqrt[c - d]*ArcTanh[(Sqrt[a]*Sqrt[c - d]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]]*Sqr
t[c + d*Sin[e + f*x]])])/(Sqrt[a]*f)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3022

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Dist[-2*(a/f), Subst[Int[1/(1 - a*c*x^2), x], x, Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sq
rt[c + d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[
b*c + a*d, 0]

Rule 3023

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Dist[(b*c - a*d)/c, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] + Di
st[a/c, Int[Sqrt[c + d*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\csc (e+f x) \sqrt {c+d \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx &=\frac {c \int \frac {\csc (e+f x) \sqrt {a+a \sin (e+f x)}}{\sqrt {c+d \sin (e+f x)}} \, dx}{a}+(-c+d) \int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}} \, dx\\ &=-\frac {(2 c) \text {Subst}\left (\int \frac {1}{1-a c x^2} \, dx,x,\frac {\cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{f}+\frac {(2 a (c-d)) \text {Subst}\left (\int \frac {1}{2 a^2-(a c-a d) x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{f}\\ &=-\frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f}+\frac {\sqrt {2} \sqrt {c-d} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c-d} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)} \sqrt {c+d \sin (e+f x)}}\right )}{\sqrt {a} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(2506\) vs. \(2(140)=280\).
time = 27.18, size = 2506, normalized size = 17.90 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(Csc[e + f*x]*Sqrt[c + d*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Csc[e + f*x]*(2*Sqrt[c]*ArcTanh[(2*Sqrt[c]*Tan[(e + f*x)/4])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e
+ f*x])] - Sqrt[c]*Tan[(e + f*x)/4]^2)] - 2*Sqrt[2]*Sqrt[c - d]*ArcTanh[(2*Sqrt[2]*Sqrt[c - d]*Tan[(e + f*x)/4
])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2*Sqrt[c]*Tan[(e + f*x)/4] - Sqrt[c]*Tan[(e + f*
x)/4]^2)] + Sqrt[c]*(Log[Tan[(e + f*x)/4]] - Log[c + Sqrt[c]*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2
*d*Tan[(e + f*x)/4] - c*Tan[(e + f*x)/4]^2]))*Sec[(e + f*x)/4]^2*(c + d*Sin[e + f*x]))/(f*Sqrt[a*(1 + Sin[e +
f*x])]*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])]*((d*Cos[e + f*x]*(2*Sqrt[c]*ArcTanh[(2*Sqrt[c]*Tan[(e + f
*x)/4])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] - Sqrt[c]*Tan[(e + f*x)/4]^2)] - 2*Sqrt[2]*Sq
rt[c - d]*ArcTanh[(2*Sqrt[2]*Sqrt[c - d]*Tan[(e + f*x)/4])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f
*x])] + 2*Sqrt[c]*Tan[(e + f*x)/4] - Sqrt[c]*Tan[(e + f*x)/4]^2)] + Sqrt[c]*(Log[Tan[(e + f*x)/4]] - Log[c + S
qrt[c]*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2*d*Tan[(e + f*x)/4] - c*Tan[(e + f*x)/4]^2]))*Sec[(e +
 f*x)/4]^2)/(2*Sqrt[c + d*Sin[e + f*x]]*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])]) + ((2*Sqrt[c]*ArcTanh[(
2*Sqrt[c]*Tan[(e + f*x)/4])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] - Sqrt[c]*Tan[(e + f*x)/4
]^2)] - 2*Sqrt[2]*Sqrt[c - d]*ArcTanh[(2*Sqrt[2]*Sqrt[c - d]*Tan[(e + f*x)/4])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4
]^4*(c + d*Sin[e + f*x])] + 2*Sqrt[c]*Tan[(e + f*x)/4] - Sqrt[c]*Tan[(e + f*x)/4]^2)] + Sqrt[c]*(Log[Tan[(e +
f*x)/4]] - Log[c + Sqrt[c]*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2*d*Tan[(e + f*x)/4] - c*Tan[(e + f
*x)/4]^2]))*Sec[(e + f*x)/4]^2*Sqrt[c + d*Sin[e + f*x]]*Tan[(e + f*x)/4])/(2*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Si
n[e + f*x])]) - ((2*Sqrt[c]*ArcTanh[(2*Sqrt[c]*Tan[(e + f*x)/4])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin
[e + f*x])] - Sqrt[c]*Tan[(e + f*x)/4]^2)] - 2*Sqrt[2]*Sqrt[c - d]*ArcTanh[(2*Sqrt[2]*Sqrt[c - d]*Tan[(e + f*x
)/4])/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2*Sqrt[c]*Tan[(e + f*x)/4] - Sqrt[c]*Tan[(e +
 f*x)/4]^2)] + Sqrt[c]*(Log[Tan[(e + f*x)/4]] - Log[c + Sqrt[c]*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])]
+ 2*d*Tan[(e + f*x)/4] - c*Tan[(e + f*x)/4]^2]))*Sec[(e + f*x)/4]^2*Sqrt[c + d*Sin[e + f*x]]*(d*Cos[e + f*x]*S
ec[(e + f*x)/4]^4 + Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])*Tan[(e + f*x)/4]))/(2*(Sec[(e + f*x)/4]^4*(c + d*S
in[e + f*x]))^(3/2)) + (Sec[(e + f*x)/4]^2*Sqrt[c + d*Sin[e + f*x]]*((2*Sqrt[c]*((Sqrt[c]*Sec[(e + f*x)/4]^2)/
(2*(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] - Sqrt[c]*Tan[(e + f*x)/4]^2)) - (2*Sqrt[c]*Tan[(e
 + f*x)/4]*(-1/2*(Sqrt[c]*Sec[(e + f*x)/4]^2*Tan[(e + f*x)/4]) + (d*Cos[e + f*x]*Sec[(e + f*x)/4]^4 + Sec[(e +
 f*x)/4]^4*(c + d*Sin[e + f*x])*Tan[(e + f*x)/4])/(2*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])])))/(Sqrt[c]
 + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] - Sqrt[c]*Tan[(e + f*x)/4]^2)^2))/(1 - (4*c*Tan[(e + f*x)/4]^
2)/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] - Sqrt[c]*Tan[(e + f*x)/4]^2)^2) - (2*Sqrt[2]*Sqrt
[c - d]*((Sqrt[c - d]*Sec[(e + f*x)/4]^2)/(Sqrt[2]*(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] +
2*Sqrt[c]*Tan[(e + f*x)/4] - Sqrt[c]*Tan[(e + f*x)/4]^2)) - (2*Sqrt[2]*Sqrt[c - d]*Tan[(e + f*x)/4]*((Sqrt[c]*
Sec[(e + f*x)/4]^2)/2 - (Sqrt[c]*Sec[(e + f*x)/4]^2*Tan[(e + f*x)/4])/2 + (d*Cos[e + f*x]*Sec[(e + f*x)/4]^4 +
 Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])*Tan[(e + f*x)/4])/(2*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])])))
/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2*Sqrt[c]*Tan[(e + f*x)/4] - Sqrt[c]*Tan[(e + f*x)
/4]^2)^2))/(1 - (8*(c - d)*Tan[(e + f*x)/4]^2)/(Sqrt[c] + Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2*Sq
rt[c]*Tan[(e + f*x)/4] - Sqrt[c]*Tan[(e + f*x)/4]^2)^2) + Sqrt[c]*((Csc[(e + f*x)/4]*Sec[(e + f*x)/4])/4 - ((d
*Sec[(e + f*x)/4]^2)/2 - (c*Sec[(e + f*x)/4]^2*Tan[(e + f*x)/4])/2 + (Sqrt[c]*(d*Cos[e + f*x]*Sec[(e + f*x)/4]
^4 + Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])*Tan[(e + f*x)/4]))/(2*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x]
)]))/(c + Sqrt[c]*Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])] + 2*d*Tan[(e + f*x)/4] - c*Tan[(e + f*x)/4]^2)
)))/Sqrt[Sec[(e + f*x)/4]^4*(c + d*Sin[e + f*x])]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(346\) vs. \(2(113)=226\).
time = 0.28, size = 347, normalized size = 2.48

method result size
default \(-\frac {\left (-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )\right ) \sqrt {c +d \sin \left (f x +e \right )}\, \left (\sqrt {2 c -2 d}\, \ln \left (-\frac {2 \left (\sqrt {2 c -2 d}\, \sqrt {2}\, \sqrt {\frac {c +d \sin \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )+c \sin \left (f x +e \right )-d \sin \left (f x +e \right )+\cos \left (f x +e \right ) c -d \cos \left (f x +e \right )-c +d \right )}{-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}\right ) \sqrt {c}-c \ln \left (\frac {-2 \sqrt {c}\, \sqrt {2}\, \sqrt {\frac {c +d \sin \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )+2 d \cos \left (f x +e \right )-2 c \sin \left (f x +e \right )-2 d}{-1+\cos \left (f x +e \right )}\right )+\ln \left (-\frac {-\sqrt {c}\, \sqrt {2}\, \sqrt {\frac {c +d \sin \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sin \left (f x +e \right )+\cos \left (f x +e \right ) c -d \sin \left (f x +e \right )-c}{\sin \left (f x +e \right ) \sqrt {c}}\right ) c \right ) \sqrt {2}}{2 f \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sin \left (f x +e \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {c}}\) \(347\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*sin(f*x+e))^(1/2)/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/f*(-1+cos(f*x+e)-sin(f*x+e))*(c+d*sin(f*x+e))^(1/2)*((2*c-2*d)^(1/2)*ln(-2*((2*c-2*d)^(1/2)*2^(1/2)*((c+d
*sin(f*x+e))/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)+c*sin(f*x+e)-d*sin(f*x+e)+cos(f*x+e)*c-d*cos(f*x+e)-c+d)/(-1+cos
(f*x+e)-sin(f*x+e)))*c^(1/2)-c*ln(2*(-c^(1/2)*2^(1/2)*((c+d*sin(f*x+e))/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)+d*cos
(f*x+e)-c*sin(f*x+e)-d)/(-1+cos(f*x+e)))+ln(-(-c^(1/2)*2^(1/2)*((c+d*sin(f*x+e))/(1+cos(f*x+e)))^(1/2)*sin(f*x
+e)+cos(f*x+e)*c-d*sin(f*x+e)-c)/sin(f*x+e)/c^(1/2))*c)/(a*(1+sin(f*x+e)))^(1/2)/sin(f*x+e)*2^(1/2)/((c+d*sin(
f*x+e))/(1+cos(f*x+e)))^(1/2)/c^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^(1/2)/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*sin(f*x + e) + c)/(sqrt(a*sin(f*x + e) + a)*sin(f*x + e)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 302 vs. \(2 (119) = 238\).
time = 0.75, size = 2911, normalized size = 20.79 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^(1/2)/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(2)*sqrt((c - d)/a)*log(((c^2 - 14*c*d + 17*d^2)*cos(f*x + e)^3 + 4*sqrt(2)*((c - 3*d)*cos(f*x + e)^
2 - (3*c - d)*cos(f*x + e) + ((c - 3*d)*cos(f*x + e) + 4*c - 4*d)*sin(f*x + e) - 4*c + 4*d)*sqrt(a*sin(f*x + e
) + a)*sqrt(d*sin(f*x + e) + c)*sqrt((c - d)/a) - (13*c^2 - 22*c*d - 3*d^2)*cos(f*x + e)^2 - 4*c^2 - 8*c*d - 4
*d^2 - 2*(9*c^2 - 14*c*d + 9*d^2)*cos(f*x + e) + ((c^2 - 14*c*d + 17*d^2)*cos(f*x + e)^2 - 4*c^2 - 8*c*d - 4*d
^2 + 2*(7*c^2 - 18*c*d + 7*d^2)*cos(f*x + e))*sin(f*x + e))/(cos(f*x + e)^3 + 3*cos(f*x + e)^2 + (cos(f*x + e)
^2 - 2*cos(f*x + e) - 4)*sin(f*x + e) - 2*cos(f*x + e) - 4)) + sqrt(c/a)*log(((c^4 - 28*c^3*d + 70*c^2*d^2 - 2
8*c*d^3 + d^4)*cos(f*x + e)^5 - (31*c^4 - 196*c^3*d + 154*c^2*d^2 - 4*c*d^3 - d^4)*cos(f*x + e)^4 + c^4 + 4*c^
3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 - 2*(81*c^4 - 252*c^3*d + 150*c^2*d^2 - 28*c*d^3 + d^4)*cos(f*x + e)^3 + 2*(79
*c^4 - 100*c^3*d + 74*c^2*d^2 - 4*c*d^3 - d^4)*cos(f*x + e)^2 - 8*((c^3 - 7*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e
)^4 - 2*(5*c^3 - 14*c^2*d + 5*c*d^2)*cos(f*x + e)^3 + 51*c^3 - 59*c^2*d + 17*c*d^2 - d^3 - 2*(18*c^3 - 33*c^2*
d + 12*c*d^2 - d^3)*cos(f*x + e)^2 + 2*(13*c^3 - 14*c^2*d + 5*c*d^2)*cos(f*x + e) + ((c^3 - 7*c^2*d + 7*c*d^2
- d^3)*cos(f*x + e)^3 - 51*c^3 + 59*c^2*d - 17*c*d^2 + d^3 + (11*c^3 - 35*c^2*d + 17*c*d^2 - d^3)*cos(f*x + e)
^2 - (25*c^3 - 31*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x +
 e) + c)*sqrt(c/a) + (289*c^4 - 476*c^3*d + 230*c^2*d^2 - 28*c*d^3 + d^4)*cos(f*x + e) + ((c^4 - 28*c^3*d + 70
*c^2*d^2 - 28*c*d^3 + d^4)*cos(f*x + e)^4 + c^4 + 4*c^3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 + 32*(c^4 - 7*c^3*d + 7*
c^2*d^2 - c*d^3)*cos(f*x + e)^3 - 2*(65*c^4 - 140*c^3*d + 38*c^2*d^2 - 12*c*d^3 + d^4)*cos(f*x + e)^2 - 32*(9*
c^4 - 15*c^3*d + 7*c^2*d^2 - c*d^3)*cos(f*x + e))*sin(f*x + e))/(cos(f*x + e)^5 + cos(f*x + e)^4 - 2*cos(f*x +
 e)^3 - 2*cos(f*x + e)^2 + (cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)*sin(f*x + e) + cos(f*x + e) + 1)))/f, 1/4*(
sqrt(2)*sqrt((c - d)/a)*log(((c^2 - 14*c*d + 17*d^2)*cos(f*x + e)^3 + 4*sqrt(2)*((c - 3*d)*cos(f*x + e)^2 - (3
*c - d)*cos(f*x + e) + ((c - 3*d)*cos(f*x + e) + 4*c - 4*d)*sin(f*x + e) - 4*c + 4*d)*sqrt(a*sin(f*x + e) + a)
*sqrt(d*sin(f*x + e) + c)*sqrt((c - d)/a) - (13*c^2 - 22*c*d - 3*d^2)*cos(f*x + e)^2 - 4*c^2 - 8*c*d - 4*d^2 -
 2*(9*c^2 - 14*c*d + 9*d^2)*cos(f*x + e) + ((c^2 - 14*c*d + 17*d^2)*cos(f*x + e)^2 - 4*c^2 - 8*c*d - 4*d^2 + 2
*(7*c^2 - 18*c*d + 7*d^2)*cos(f*x + e))*sin(f*x + e))/(cos(f*x + e)^3 + 3*cos(f*x + e)^2 + (cos(f*x + e)^2 - 2
*cos(f*x + e) - 4)*sin(f*x + e) - 2*cos(f*x + e) - 4)) + 2*sqrt(-c/a)*arctan(-1/4*((c^2 - 6*c*d + d^2)*cos(f*x
 + e)^2 - 9*c^2 + 6*c*d - d^2 + 8*(c^2 - c*d)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*
sqrt(-c/a)/((c^2*d - c*d^2)*cos(f*x + e)^3 - (c^3 - 3*c^2*d)*cos(f*x + e)*sin(f*x + e) + (2*c^3 - c^2*d + c*d^
2)*cos(f*x + e))))/f, 1/4*(2*sqrt(2)*sqrt(-(c - d)/a)*arctan(1/4*sqrt(2)*sqrt(a*sin(f*x + e) + a)*((c - 3*d)*s
in(f*x + e) - 3*c + d)*sqrt(d*sin(f*x + e) + c)*sqrt(-(c - d)/a)/((c*d - d^2)*cos(f*x + e)*sin(f*x + e) + (c^2
 - c*d)*cos(f*x + e))) + sqrt(c/a)*log(((c^4 - 28*c^3*d + 70*c^2*d^2 - 28*c*d^3 + d^4)*cos(f*x + e)^5 - (31*c^
4 - 196*c^3*d + 154*c^2*d^2 - 4*c*d^3 - d^4)*cos(f*x + e)^4 + c^4 + 4*c^3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 - 2*(8
1*c^4 - 252*c^3*d + 150*c^2*d^2 - 28*c*d^3 + d^4)*cos(f*x + e)^3 + 2*(79*c^4 - 100*c^3*d + 74*c^2*d^2 - 4*c*d^
3 - d^4)*cos(f*x + e)^2 - 8*((c^3 - 7*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e)^4 - 2*(5*c^3 - 14*c^2*d + 5*c*d^2)*c
os(f*x + e)^3 + 51*c^3 - 59*c^2*d + 17*c*d^2 - d^3 - 2*(18*c^3 - 33*c^2*d + 12*c*d^2 - d^3)*cos(f*x + e)^2 + 2
*(13*c^3 - 14*c^2*d + 5*c*d^2)*cos(f*x + e) + ((c^3 - 7*c^2*d + 7*c*d^2 - d^3)*cos(f*x + e)^3 - 51*c^3 + 59*c^
2*d - 17*c*d^2 + d^3 + (11*c^3 - 35*c^2*d + 17*c*d^2 - d^3)*cos(f*x + e)^2 - (25*c^3 - 31*c^2*d + 7*c*d^2 - d^
3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)*sqrt(c/a) + (289*c^4 - 476*c^
3*d + 230*c^2*d^2 - 28*c*d^3 + d^4)*cos(f*x + e) + ((c^4 - 28*c^3*d + 70*c^2*d^2 - 28*c*d^3 + d^4)*cos(f*x + e
)^4 + c^4 + 4*c^3*d + 6*c^2*d^2 + 4*c*d^3 + d^4 + 32*(c^4 - 7*c^3*d + 7*c^2*d^2 - c*d^3)*cos(f*x + e)^3 - 2*(6
5*c^4 - 140*c^3*d + 38*c^2*d^2 - 12*c*d^3 + d^4)*cos(f*x + e)^2 - 32*(9*c^4 - 15*c^3*d + 7*c^2*d^2 - c*d^3)*co
s(f*x + e))*sin(f*x + e))/(cos(f*x + e)^5 + cos(f*x + e)^4 - 2*cos(f*x + e)^3 - 2*cos(f*x + e)^2 + (cos(f*x +
e)^4 - 2*cos(f*x + e)^2 + 1)*sin(f*x + e) + cos(f*x + e) + 1)))/f, 1/2*(sqrt(2)*sqrt(-(c - d)/a)*arctan(1/4*sq
rt(2)*sqrt(a*sin(f*x + e) + a)*((c - 3*d)*sin(f*x + e) - 3*c + d)*sqrt(d*sin(f*x + e) + c)*sqrt(-(c - d)/a)/((
c*d - d^2)*cos(f*x + e)*sin(f*x + e) + (c^2 - c*d)*cos(f*x + e))) + sqrt(-c/a)*arctan(-1/4*((c^2 - 6*c*d + d^2
)*cos(f*x + e)^2 - 9*c^2 + 6*c*d - d^2 + 8*(c^2 - c*d)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(d*sin(f*x +
 e) + c)*sqrt(-c/a)/((c^2*d - c*d^2)*cos(f*x + e)^3 - (c^3 - 3*c^2*d)*cos(f*x + e)*sin(f*x + e) + (2*c^3 - c^2
*d + c*d^2)*cos(f*x + e))))/f]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + d \sin {\left (e + f x \right )}}}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \sin {\left (e + f x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))**(1/2)/sin(f*x+e)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(c + d*sin(e + f*x))/(sqrt(a*(sin(e + f*x) + 1))*sin(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sin(f*x+e))^(1/2)/sin(f*x+e)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c+d\,\sin \left (e+f\,x\right )}}{\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*sin(e + f*x))^(1/2)/(sin(e + f*x)*(a + a*sin(e + f*x))^(1/2)),x)

[Out]

int((c + d*sin(e + f*x))^(1/2)/(sin(e + f*x)*(a + a*sin(e + f*x))^(1/2)), x)

________________________________________________________________________________________